109 research outputs found

    Infection grave à Moraxella glucidolytica chez un Chat (aperçu du rôle pathogène des moraxella en Polynésie française)

    Get PDF
    A l’occasion d’un cas très démonstratif de péritonite subaiguë à Moraxella glucidolytica chez un Chat, ont été étudiées les infections humaines relativement nombreuses dues au même germe en Polynésie Française. En raison du parallélisme de ces infections chez l’homme et chez l’animal, on peut évoquer l’hypothèse d’interférences entre la maladie animale et la maladie humaine et le rôle possible des animaux dans la diffusion du germe

    Regional Brain Differences in Cortical Thickness, Surface Area and Subcortical Volume in Individuals with Williams Syndrome

    Get PDF
    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex patterns of cortical differences using both surface area and thickness. In addition, correlation results implicate specific brain regions in levels of anxiety in WS, consistent with previous reports investigating general anxiety disorders in the general population

    Neurobehavioral Mechanisms of Temporal Processing Deficits in Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) disrupts temporal processing, but the neuronal sources of deficits and their response to dopamine (DA) therapy are not understood. Though the striatum and DA transmission are thought to be essential for timekeeping, potential working memory (WM) and executive problems could also disrupt timing.The present study addressed these issues by testing controls and PD volunteers 'on' and 'off' DA therapy as they underwent fMRI while performing a time-perception task. To distinguish systems associated with abnormalities in temporal and non-temporal processes, we separated brain activity during encoding and decision-making phases of a trial. Whereas both phases involved timekeeping, the encoding and decision phases emphasized WM and executive processes, respectively. The methods enabled exploration of both the amplitude and temporal dynamics of neural activity. First, we found that time-perception deficits were associated with striatal, cortical, and cerebellar dysfunction. Unlike studies of timed movement, our results could not be attributed to traditional roles of the striatum and cerebellum in movement. Second, for the first time we identified temporal and non-temporal sources of impaired time perception. Striatal dysfunction was found during both phases consistent with its role in timekeeping. Activation was also abnormal in a WM network (middle-frontal and parietal cortex, lateral cerebellum) during encoding and a network that modulates executive and memory functions (parahippocampus, posterior cingulate) during decision making. Third, hypoactivation typified neuronal dysfunction in PD, but was sometimes characterized by abnormal temporal dynamics (e.g., lagged, prolonged) that were not due to longer response times. Finally, DA therapy did not alleviate timing deficits.Our findings indicate that impaired timing in PD arises from nigrostriatal and mesocortical dysfunction in systems that mediate temporal and non-temporal control-processes. However, time perception impairments were not improved by DA treatment, likely due to inadequate restoration of neuronal activity and perhaps corticostriatal effective-connectivity

    Reduced Gray to White Matter Tissue Intensity Contrast in Schizophrenia

    Get PDF
    BACKGROUND: While numerous structural magnetic resonance imaging (MRI) studies revealed changes of brain volume or density, cortical thickness and fibre integrity in schizophrenia, the effect of tissue alterations on the contrast properties of neural structures has so far remained mostly unexplored. METHODS: Whole brain high-resolution MRI at 3 Tesla was used to investigate tissue contrast and cortical thickness in patients with schizophrenia and healthy controls. RESULTS: Patients showed significantly decreased gray to white matter contrast in large portions throughout the cortical mantle with preponderance in inferior, middle, superior and medial temporal areas as well as in lateral and medial frontal regions. The extent of these intensity contrast changes exceeded the extent of cortical thinning. Further, contrast changes remained significant after controlling for cortical thickness measurements. CONCLUSIONS: Our findings clearly emphasize the presence of schizophrenia related brain tissue changes that alter the imaging properties of brain structures. Intensity contrast measurements might not only serve as a highly sensitive metric but also as a potential indicator of a distinct pathological process that might be independent from volume or thickness alterations

    Classification of First-Episode Schizophrenia Patients and Healthy Subjects by Automated MRI Measures of Regional Brain Volume and Cortical Thickness

    Get PDF
    BACKGROUND: Although structural magnetic resonance imaging (MRI) studies have repeatedly demonstrated regional brain structural abnormalities in patients with schizophrenia, relatively few MRI-based studies have attempted to distinguish between patients with first-episode schizophrenia and healthy controls. METHOD: Three-dimensional MR images were acquired from 52 (29 males, 23 females) first-episode schizophrenia patients and 40 (22 males, 18 females) healthy subjects. Multiple brain measures (regional brain volume and cortical thickness) were calculated by a fully automated procedure and were used for group comparison and classification by linear discriminant function analysis. RESULTS: Schizophrenia patients showed gray matter volume reductions and cortical thinning in various brain regions predominantly in prefrontal and temporal cortices compared with controls. The classifiers obtained from 66 subjects of the first group successfully assigned 26 subjects of the second group with accuracy above 80%. CONCLUSION: Our results showed that combinations of automated brain measures successfully differentiated first-episode schizophrenia patients from healthy controls. Such neuroimaging approaches may provide objective biological information adjunct to clinical diagnosis of early schizophrenia

    Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls

    Get PDF
    Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders. © 2012 Bramen et al

    The Cerebellum Link to Neuroticism: A Volumetric MRI Association Study in Healthy Volunteers

    Get PDF
    Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms

    Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study

    Get PDF
    BACKGROUND: It is anticipated that current and future preventive therapies will likely be more effective in the early stages of dementia, when everyday functioning is not affected. Accordingly the early identification of people at risk is particularly important. In most cases, when subjects visit an expert and are examined using neuropsychological tests, the disease has already been developed. Contrary to this cognitive games are played by healthy, well functioning elderly people, subjects who should be monitored for early signs. Further advantages of cognitive games are their accessibility and their cost-effectiveness. PURPOSE: The aim of the investigation was to show that computer games can help to identify those who are at risk. In order to validate games analysis was completed which measured the correlations between results of the 'Find the Pairs' memory game and the volumes of the temporal brain regions previously found to be good predictors of later cognitive decline. PARTICIPANTS AND METHODS: 34 healthy elderly subjects were enrolled in the study. The volume of the cerebral structures was measured by MRI. Cortical reconstruction and volumetric segmentation were performed by Freesurfer. RESULTS: There was a correlation between the number of attempts and the time required to complete the memory game and the volume of the entorhinal cortex, the temporal pole, and the hippocampus. There was also a correlation between the results of the Paired Associates Learning (PAL) test and the memory game. CONCLUSIONS: The results gathered support the initial hypothesis that healthy elderly subjects achieving lower scores in the memory game have increased level of atrophy in the temporal brain structures and showed a decreased performance in the PAL test. Based on these results it can be concluded that memory games may be useful in early screening for cognitive decline
    corecore